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A method is described that reconstructs the projected object potential using

data recorded in the coherent imaging mode of a scanning transmission electron

microscope. The technique is applicable in the presence of multiple scattering. It

is not required that the thickness is known. Model examples exploring the

nature of the data set required, the stability of the algorithm and the limitations

on resolution are provided.

1. Introduction

Electron probes offer many advantages in investigating

materials on the nanoscale. At high energies, they can pene-

trate specimens, thus not restricting interactions to the surface.

By virtue of their charge, electron beams may be manipulated

and focused more easily than either X-rays or neutrons. Yet

there arise limitations precisely because of the strength of the

interaction between electrons and material solids. High-

energy electrons are liable to undergo multiple scattering in all

but the thinnest specimens and images resulting from strong

multiple scattering are difficult to interpret in terms of the

sample structure. Thus quantitative electron microscopy is

limited either by the need to prepare very thin samples or

through the difficulties of interpreting images formed from

multiply scattered electrons.

Phase retrieval is a vital step in most structure-retrieval

procedures in electron microscopy since knowledge of the

complex wavefield represents complete knowledge of the

wavefield beyond the specimen. The most direct forms of

structure retrieval rely on very thin samples and assume either

a single scattering approximation, in which there is a direct

correspondence between the complex exit wave and the

projected potential of the specimen, or a phase-object

approximation, in which there is a direct correspondence

between the phase of the exit wave and the projected potential

of the specimen. Early attempts to move beyond these

approximations by iterative methods include the work of

Gribelyuk (1991) and Beeching & Spargo (1993). However,

the stability of these algorithms remained limited to small

thicknesses.

Iterative techniques, such as iterative phase retrieval (Allen

et al., 2004a), may be motivated on the basis of information: a

quantity of known data is used to constrain and determine a

quantity of unknown data. This balance between known and

unknown data suggests that the situation can also be viewed as

a minimization problem. Lentzen & Urban use this concept,

applying simulated-annealing and maximum-likelihood tech-

niques to complex wavefunction data to retrieve complex

potential data (Lentzen & Urban, 1996, 2000). O’Leary &

Allen (2005) recast this problem in Bloch-wave form to use

non-linear-equation-solving methods on the Fourier coeffi-

cients of the wavefunction to obtain the Fourier coefficients of

the potential.

Such methods become even more reliable when the

problem is over-determined. One way to over-determine the

problem is to use additional a priori information about the

specimen. The channelling model of Van Dyck and co-workers

assumes that crystals have a columnar structure and so

reduces the number of unknowns to the column locations and

types (Van Dyck & Chen, 1999; Geuens & Van Dyck, 2002).

Another way to over-determine the problem is to obtain

additional experimental data. Rez (1999) considered data

from different accelerating voltages and Allen, Koch et al.

(2001) considered data from different thicknesses. The over-

determined approach was taken still further by Allen and co-

workers (Allen et al., 1999, 2000; Allen & Oxley, 2001),

extending previous work (Allen et al., 1998; Spence, 1998),

who used complex wavefunctions from multiple tilts of an

incident plane wave to reduce the problem to an over-deter-

mined set of linear equations, ensuring uniqueness of solution.

The method handles all orders of multiple scattering but

performing the accurate series of tilts is difficult to implement

experimentally. We seek to retain the strengths of this

approach to structure retrieval while circumventing the

obstacle of performing the tilt series.

Geometries other than that of the conventional transmis-

sion electron microscope are available. One is scanning

transmission electron microscopy, which is particularly tanta-

lizing for our purposes because the convergent probe contains

a range of incident directions (Spence & Cowley, 1978). The

scanning transmission electron microscope is generally used to

measure incoherent signals, as in high-angle annular dark-field

imaging and in electron-energy-loss spectroscopy. Such tech-

niques are useful because the images are often directly inter-

pretable but this has reduced the tendency for theoretical

simulations to be seen as a necessary adjunct to experiment.

Inversion techniques have been presented for these imaging



modes assuming the incoherent imaging model, whereby the

image is taken to be the convolution of the probe intensity

with an object function for the specimen (Nellist & Penny-

cook, 1998a) but the assumptions on which this model is based

may cease to be valid as probe size decreases (Ishizuka, 2001).

Inversion techniques using coherent imaging have been

considered. In the phase-object approximation, Rodenburg &

Bates (1992) showed that diffraction pattern data recorded

over a range of probe positions are sufficient to determine the

transmission function and thus the projected potential.

Plamann & Rodenburg (1998) took this a step further in

describing dynamical effects with thickness presenting an

inversion using what they called the improved phase-object

approximation, where the approximation is taken to second

order in thickness by making the reference plane of the phase

object the centre of the crystal rather than the exit face.

Convergent-beam electron diffraction offers other possible

approaches to structure retrieval. For example, Vincent et al.

(1999) applied a phase-retrieval-style algorithm to the inten-

sity distribution within a dark-field disc to obtain thickness

information about the displacement of reflecting planes.

A new approach is presented here that uses the scanning

transmission electron microscope to collect data sets like those

used by Rodenburg and co-workers but which goes beyond

the assumption of the phase-object approximation to tackle

the multiple-scattering problem after the manner of Allen and

co-workers. This requires both an increased size for the data

set and the separate implementation of a set of phase retrie-

vals. However, it retains the attractive properties previously

emphasized by Allen and co-workers: it is able to handle

multiple scattering and it does not require that the sample

thickness be known.

2. The scattering matrix and the structure matrix

Consider a slab-like crystal with surface area greatly

exceeding the thickness. Define a coordinate system such that

the reciprocal-lattice vectors in the set fGg are parallel to the

plane of the crystal surface and the z direction is normal to the

crystal surface. Moreover, we shall identify the optical axis

with this z direction irrespective of the direction of the inci-

dent beam, thus working in a basis fixed in the crystal. Let uG

and vG denote the Fourier coefficients of the wavefunction in

the plane of the entrance and exit surfaces, respectively. The

scattering matrix SðtÞ, where t is the crystal thickness, is

defined to be the matrix operator connecting the incident and

exit waves. [The scattering-matrix approach was introduced to

electron microscopy by Sturkey (1962), though the nomen-

clature has since changed somewhat.] Thus, in matrix notation,

vG ¼
P
H

SG;HðtÞuH; ð1Þ

where the entrance wave has the form

 uðr?Þ ¼
P
G

uG expð2�iG � r?Þ; ð2Þ

in which r? is a position vector in the plane of the crystal

surface. The exit wave has an analogous form.

In conventional transmission electron microscopy, where a

single plane wave is incident upon the crystal, the symmetric

Laue position is described by uG ¼ �G;0. It follows immedi-

ately from equation (1) that the Fourier coefficients of the

exit-surface wave are contained in the G ¼ 0 column of the

scattering matrix.

The scattering matrix is related to the projected potential of

the specimen via

SðtÞ ¼ exp
i�t

K
A

� �
; ð3Þ

where K ¼ 1=� is the refraction-corrected wavevector and the

structure matrix A is given by

A ¼
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ð4Þ

in which WG ¼ UG þ iU 0G, where UG and U0G are the Fourier

coefficients of the elastic and absorptive potentials, respec-

tively (Allen et al., 2000). Note that the same Fourier coeffi-

cients of potential occur in several positions in the structure

matrix.

Expanding equation (3) in a Taylor series is informative:

SðtÞ ’ I þ
i�t

K
Aþ

i�t

K

� �2

A
2
þ . . . : ð5Þ

The different powers of the structure matrix may be inter-

preted as different orders of scattering. For instance, the A
2

term may be interpreted as describing the contribution due to

double scattering. In the single-scattering approximation, the

series is truncated to first order in A and there is a one-to-one

correspondence between the elements of the scattering matrix

S and the structure matrix A. For a sufficiently large structure

matrix, all coefficients of potential will appear in the central

column ofA and it suffices in this approximation to determine

only the central column of the scattering matrix S – precisely

what is done in conventional transmission electron micros-

copy.

The situation is complicated when one moves beyond the

single-scattering approximation because the higher-order

contributions introduce non-linear terms in the object

potential. However, Allen and co-workers (Allen et al., 1999,

2000) showed that if the entire scattering matrix is obtained

then the inversion problem may be reduced to a linear

problem, which is therefore unique and well defined. This is

possible because the scattering matrix and the structure matrix

have the same eigenvector spectrum. The structure matrix

may be written in terms of the matrix of eigenvectors C and the

eigenvalues �i via the spectral representation

A ¼ C½�i
�DC
�1: ð6Þ

research papers

398 S. D. Findlay � Structure retrieval using STEM Acta Cryst. (2005). A61, 397–404



Using equation (3), the scattering matrix may thus be written

as

SðtÞ ¼ C exp
i�t

K
�i

� �� �
D

C
�1: ð7Þ

So the eigenvectors of the structure matrix are obtained

immediately on finding those of the scattering matrix.

Obtaining the eigenvalues of the structure matrix from those

of the scattering matrix is hampered because there is a

uniqueness problem in taking the complex logarithm. Instead,

we use the determined eigenvectors together with the known

diagonal elements and symmetries of the structure matrix to

generate from equation (6) a set of linear equations satisfied

by the eigenvalues (Allen et al., 2000). It is interesting to note

that this approach does not require the thickness to be known,

since it appears only with the unused eigenvalues of the

scattering matrix.

A method for obtaining the entire scattering matrix using

scanning transmission electron microscopy will be explained

in the next section. For comparison purposes, a method for

obtaining the entire scattering matrix using conventional

transmission electron microscopy is given here. Suppose that

we have an incident plane wave with tangential momentum

component H. In reciprocal-space notation, equation (1) gives

that the exit-surface wavefunction has Fourier coefficients

�HðG; tÞ ¼ SG;HðtÞ: ð8Þ

This wavefunction is then transmitted through a lens, which is

described via the transfer function

T�f ðqÞ ¼ AðqÞ exp½�i�ðq;�f Þ�; ð9Þ

where AðqÞ is the pupil aperture function and �ðq;�f Þ is the

aberration function. The defocus value is explicitly empha-

sized because its variation is key to the phase-retrieval method

to be used. Phase retrieval may be effected by varying any of

the coherent aberrations (Allen, Oxley & Paganin, 2001) but

for simplicity we consider only defocus.

The measured intensity is then

I�f ;Hðr?; tÞ ¼ ��f ;Hðr?; tÞ
�� ��2
¼

P
G

SG;HðtÞT�f ðGÞ expð2�iG � r?Þ

����
����

2

: ð10Þ

Phase retrieval, the umbrella term for a slew of techniques

that use intensity information to determine the phase, is

necessary to obtain the wavefunction ��f ;Hðr?; tÞ from the

measured intensity. One method of phase retrieval is the

through-focal-series method, which uses the intensities

recorded at a range of defocus values to determine the phase

via the requirement of consistent propagation between these

images. Further details may be found in Allen et al. (2004a).

From the complex wavefunction so determined, one can

calculate the values of SG;H. Since phase retrieval only

determines the phase up to an arbitrary, additive, constant and

the retrievals for different tilts are independent, different

columns in the scattering matrix are not correctly phased with

respect to one another. However, the relative phasing can be

accomplished because the symmetry of the structure matrix

across the anti-diagonal, visible in equation (4), carries over to

the scattering matrix and provides a link between the columns.

3. Measuring the scattering matrix with the scanning
transmission electron microscope

Allen and co-workers (Allen et al., 1999, 2000) proposed that

the scattering matrix should be obtained with a conventional

transmission electron microscope by performing a series of

experiments at different tilts of the incident beam. Spence

(1998) suggested using overlapping discs in convergent-beam

electron diffraction geometry to determine the phases of

diffraction beams pair-wise, in the manner of ptychography

(Nellist & Rodenburg, 1998). A method for obtaining these

data with the scanning transmission electron microscope using

a through-focal-series approach to phase retrieval will be

presented. This offers no saving in either the size of the data

set recorded or the need to perform phase retrieval but it does

circumvent the need to perform experiments for a range of

different incident tilts – the convergent probe of the scanning

transmission electron microscope contains a range of tilts

already.

In the scanning transmission electron microscope, the

objective lens is positioned before the specimen and used to

form a convergent probe (Spence & Cowley, 1978). Thus, the

incident wavefunction upon the crystal is, in reciprocal space,

given by the lens transfer function of equation (9) with the

addition of a phase term for the position R of the probe:

uH ¼ T�f ðHÞ expð�2�iH � RÞ: ð11Þ

From equation (1), it readily follows that the exit-surface

wavefunction is given by

 �f ðr?; t;RÞ ¼
P
H;G

SG;HðtÞT�f ðHÞ expð�2�iH � RÞ

� expð2�iG � r?Þ ð12Þ

and the intensity in the diffraction plane is thus

I�f ðG; t;RÞ ¼
P
H

SG;HðtÞT�f ðHÞ expð�2�iH � RÞ

����
����

2

: ð13Þ

Note that in these equations only the set fGg is used, i.e. the

physical reciprocal-lattice vectors. The convergent probe

contains a continuum of transverse momenta, however it has

been shown that for perfect crystals the wavefunction de-

couples into a set of wavefunctions each pertaining to a

different tilt within the first Brillouin zone and each containing

only vectors differing by physical reciprocal-lattice vectors

(Findlay et al., 2003). Thus in the crystalline case one may,

without loss of generality, consider just one such set, provided

measurements are restricted to the diffraction plane where

this set is distinguishable from the others by spatial separation

once the angular calibration has been made.

Note also that this intensity is effectively four-dimensional:

for each physical probe position R in a two-dimensional scan,

a physical diffraction pattern with points labelled by the two-

dimensional reciprocal-lattice vector G is recorded. ‘Physical’
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has been emphasized because the experiment dictates an

obvious interpretation of I�f ðG; t;RÞ: view R as a parameter

and, for each value of this parameter, view G as the dynamic

variable describing the image. In principle, the machine could

be shut down and restarted between recording such a data set

and recording that for the next position R as there is no dy-

namical connection between measurements at different probe

positions.

However, comparing the general form of equation (13) with

equation (10) suggests that, mathematically, another inter-

pretation is possible. One might instead treat G as a parameter

and R as the dynamical variable, forming intensity ‘images’ as

a function of R for a fixed value of G. This is not new. Taking

G ¼ 0 and forming an image as a function of R is known as a

bright-field image and is often related via reciprocity argu-

ments to measurements in conventional transmission electron

microscopy (Cowley, 1969).

Thinking about equation (13) in this way motivates an

alternative option for phase retrieval. The obvious option is to

perform phase retrieval on the physical wavefunction, on the

images or diffraction patterns formed for a fixed value of R.

But having appreciated the similarity between equations (10)

and (13), one may use phase retrieval on the latter, taking

images as a function of R for a fixed value of G. This corre-

sponds to no physical wavefunction; we are not retrieving the

phase of anything that propagates. However, the ‘image’ so

described behaves and changes with defocus as if it did and the

technique allows for the phasing of the coefficients involved in

exact analogy to the components of a wavefunction.

To draw out the similarity with equation (10), let us rewrite

equation (13) as

I�f ;GðR; tÞ ¼
P
H

S�G;HðtÞT
�
�f ðHÞ expð2�iH � RÞ

����
����

2

: ð14Þ

The phase-retrieval algorithm used tends to be more stable if

the dummy summation variable H is changed to HþG:

I�f ;GðR; tÞ ¼
P
H

S�G;HþGðtÞT
�
�f ðHþGÞ expð2�iH � RÞ

����
����

2

: ð15Þ

Having retrieved the phase, shifting back to the original basis

is straightforward.

For a fixed value of G, the through-focal-series technique

is used to retrieve the reciprocal-space ‘wavefunction’

S�G;HðtÞT
�
�f ðHÞ, which we aberration-correct to yield SG;HðtÞ.

This then gives, correctly phased, the elements within one row

of the scattering matrix (cf. within a column, as was obtained

in conventional transmission electron microscopy). Repeating

the procedure for different values of G determines the full

scattering matrix. The different rows are not automatically

phased correctly but this may be accomplished via the afore-

mentioned symmetry across the anti-diagonal of the scattering

matrix.

Thus we have a method of determining the entire scattering

matrix, and therefore carrying out the inversion procedure,

within the scanning transmission electron microscope. The

requisite data are a set of diffraction patterns for different

positions of the probe on the surface for a range of defocus

values. The full method will be illustrated through simulation.

But first we shall discuss further some of the experimental

details that will affect the retrieval.

4. Experimental factors

4.1. Truncation

The inversion procedure, which requires the determination

of eigenvectors, must be applied to a square matrix. One may

in principle collect images in the form of equation (13) out to

very large values of G, but in performing the aberration-

correction step it becomes clear that only those values of SG;H

for which T�f ðHÞ 6¼ 0, for which H fits within the probe-

forming aperture, may be obtained. The largest square scat-

tering matrix is limited to this resolution. As per equation (3),

the scattering matrix is formed from the matrix exponential of

the structure matrix. The structure matrix is formally of infi-

nite order and therefore so too is the scattering matrix.

Numerical modelling requires treatment of finite matrices but

it may prove that adequate convergence requires them to be

of large order. By performing the inversion on a truncated

scattering matrix, we treat a model problem with scattering

and structure matrices of relatively small order. The results

will only be valid if the elements in the retrieved finite struc-

ture matrix are good approximations to those of the full

structure matrix. This will be the case if the scattering matrix

formed by the truncated structure matrix almost converges to

the truncated portion of the scattering matrix as calculated

from the full structure matrix. If this is not the case, then

aliasing effects serve to distort many of the Fourier coefficients

of potential retrieved.

This problem, called the truncation problem, has been

discussed in the systematic row case by Allen & Oxley (2001).

The systematic row case converges much faster than the

general zone-axis case but the qualitative conclusions drawn

remain the same. It was found that the aliasing acted from the

off-diagonal corners inwards, being more significant for more

severe truncations. Truncation tended to significantly over-

estimate the magnitude of higher-order Fourier coefficients

and so, with the expectation that such Fourier coefficients

should tend to decrease with increasing spatial frequency, it

may be possible to identify suspect Fourier coefficients of the

retrieved potential by inspection. Truncation will prove to be

the most severe limitation on the inversion procedure in

practice and will be discussed after presenting the simulations.

4.2. Phase retrieval

Determination of the scattering matrix as discussed in x3

requires a suitable phase-retrieval algorithm. This algorithm

should be reasonably robust in the presence of noise, able to

handle the possibility of vortices in the phase and ideally be

able to correct for (or failing that to cope with) the presence of

partial coherence. A through-focal-series method for phase

retrieval was chosen, since it is known to satisfy the first two

conditions (Allen, Faulkner et al., 2001). The global iterative
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method of Allen and co-workers (Allen et al., 2004a,b) is

another possibility, which may handle noise and partial

coherence more rigorously, though this more elaborate course

will not be pursued here.

While incoherent imaging in scanning transmission electron

microscopy seems to be fairly robust in the presence of partial

coherence (Nellist & Pennycook, 1998b), the coherent

imaging mode is affected by it. It is readily shown from

equation (14) that the effect of the spread in defocus values on

the intensity images is identical to its effect in conventional

transmission electron microscopy (Allen et al., 2004a). Speci-

fically, averaging equation (14) over defocus using a Gaussian

distribution with a 1=e value of �, centred about �f , gives

I�f ;GðR; tÞ ¼
P

H;H0
S�G;HðtÞSG;H0 ðtÞT

�
�f ðHÞT�f ðH

0Þ

� exp½2�iðH�H0Þ � R�

� exp½��2�2�2
ðH2
�H02Þ2=4�: ð16Þ

As a consequence of the final exponential, this result is no

longer exactly expressible as the modulus squared of a single

wavefunction. The full form above is used to perform the

simulation but when attempting to correct for the spread in

defocus, we shall make the factorization approximation

exp½��2�2�2
ðH2
�H02Þ2=4�

’ expð��2�2�2H4=4Þ expð��2�2�2H04=4Þ;

and deconvolve to remove the resultant envelope function

(Coene et al., 1996; Allen et al., 2004a).

The effect of the finite source size is somewhat different in

scanning transmission electron microscopy, being equivalent

to the effect of finite detector pixel size in conventional

transmission electron microscopy (Nellist & Rodenburg,

1994). This can be described as a convolution over probe

position of the image with a distribution resulting from the

finite source size. Provided it can be quantified, this issue can

be corrected by deconvolution applied to the images prior to

phase retrieval. As such, this effect is not included in the

simulations presented.

There is an issue relating to our ability to determine the

precise locations of the diffraction beams G: the possibility of

some systematic offset, measuring beams Gþ q rather than G.

In this case, we would record an image

I�f ;GþqðRÞ ¼
P
H

S�Gþq;HþqðtÞT
�
�f ðHþ qÞ exp½2�iðHþ qÞ � R�

����
����

2

:

ð17Þ

The scattering matrix SGþq;HþqðtÞ is formed from equation (3)

but using a structure matrix with diagonal entries shifted as

G! Gþ q. This does not affect the symmetries off the

diagonal of the structure matrix. But it does mean our

assumption of its diagonal elements will be in error, and these

are the inhomogeneous equations used to find the eigenvalues.

It also means that the symmetry across the anti-diagonal in the

scattering matrix, used to phase the different rows, will no

longer be precise. Because of the offset q in the transfer

function, the phase retrieval is much less successful. We shall

not simulate this possibility, assuming either that the diffrac-

tion pattern is adequately calibrated or that the success of the

phase retrieval can be used to determine the most favourable

value of q to use.

4.3. Validity check

Thus far, we have suggested factors that might limit the

accuracy of the retrieved potential. What validity check might

be applied to the results? The simplest course would use the

retrieved result to solve the direct problem – to simulate the

scattering matrix – and compare with the experimental data.

That the scattering-matrix inversion does not require the

thickness to be known was an advantage in the inverse

problem. However, this deficit of knowledge now prevents

solving the direct problem.

From a converged retrieval, one might try using minimiza-

tion to determine the thickness by comparing simulated and

experimental scattering matrices. Let us define a measure-of-

fit function for the unknown thickness via

FðtÞ ¼
X
G;H

Ssim
G;HðtÞ

Ssim
0;0 ðtÞ

�
S

exp
G;H

S
exp
0;0

����
����

2

; ð18Þ

where Ssim
G;HðtÞ denotes an element of the simulated scattering

matrix using the retrieved potential and guessed thickness t,

while S
exp
G;H denotes the corresponding scattering-matrix

element of the experimental data. Both quantities have been

normalized by the central scattering matrix element because

the absolute magnitude and phase of the experimental data

are likely to be unknown. This was not a problem for our

inversion method: multiplicative constants do not affect the

eigenvectors, only the unused eigenvalues.

As a prescription for limiting the effects of aliasing resulting

from truncation, we shall only take from the retrieval those

Fourier coefficients of potential that lie in the central column

of the structure matrix. For the purposes of forming Ssim
G;HðtÞ,

we shall therefore make a scattering matrix from these Fourier

coefficients only; elements that are not by symmetry identical

to any in the central column are set to zero. We shall also force

the known diagonal elements but set the mean absorption U 00
to zero since the normalization will eliminate it anyway.

5. Case study

Consider a 152 Å thick specimen of GaAs in the [110]

orientation to be probed with 200 keV electrons. The scat-

tering matrix was simulated using 261 beams but was then

truncated to 69 beams, corresponding to a 36 mrad aperture,

prior to retrieval. While this is a larger aperture than generally

used in scanning transmission electron microscopy, it should

be appreciated that the technique here does not require an

especially fine probe; provided that the aberrations are well

characterized, they need not be perfectly balanced out to the

edge of the aperture, thus allowing for the use of larger

apertures.

Figs. 1(a) and (b) show the intensity and phase of the exit-

surface wave assuming normal plane-wave incidence. The

Acta Cryst. (2005). A61, 397–404 S. D. Findlay � Structure retrieval using STEM 401

research papers



differences in form between the image and phase and the

projected potential show that we are well beyond the range

of single-scattering or phase-object approximations. For

comparison, Fig. 1(g) shows schematically the projected

structure. Five defocus values, in even steps from 0 to 400 Å,

were used to generate the data to which through-focal series

phase retrieval was applied. Prior to the phase retrieval and

inversion, noise was added to the diffraction-pattern images

using Poisson counting statistics with the images normalized

such that the maximum number of counts is 10000 and will

thus have 1% noise added. This means that pixels with an

order of magnitude fewer counts will have noise at the 3%

level. Furthermore, temporal incoherence was simulated

assuming a 0.3 eV full-width-at-half-maximum spread at the

tip and a chromatic aberration coefficient of Cc ¼ 1:5 mm,

leading to a 1=e value of 13.5 Å in defocus spread. Subsequent

to the phase retrieval, we shall attempt to correct for this using

the factorized envelope approximation (Coene et al., 1996;

Allen et al., 2004a). The through-focal series of five images was

generated for each of the 69 beams in the objective aperture.

Each image was 64� 45 pixels, corresponding to the raster of

probe positions within the repeating unit. On an Intel XEON

2.00 GHz machine, the complete phase retrieval took about

2 min, using 200 iterations for each series. For matrices of

order less than 100, the inversion step takes a negligible

amount of computation time. The slowest part of the calcu-

lation was the direct simulation accounting fully for chromatic

aberration – this took several hours.

Figs. 1(c) and (d) show the projected potential for the input

and retrieved data using only the 69 Fourier coefficients on the

central column of the structure matrix. The retrieved potential

is in fair agreement with the reference structure, though the

retrieved potential erroneously has the As columns less

pronounced than the Ga columns. Figs. 1(e) and ( f) show, for

the real and imaginary parts of the Fourier coefficients of the

potential, the comparison between the input and retrieved

data. The effects of noise are manifest in differences between

coefficients that in the perfect structure would be identical.

Fig. 1(h) shows FðtÞ as defined by equation (18) and the global

minimum at a thickness of 150 Å is in excellent agreement

with the true thickness of 152 Å.

6. Discussion

It was suggested earlier that the greatest limitation on the

method was the error involved in the truncation step. In the

Bloch-wave method, the number of beams is selected

according to some convergence criterion. For plane-wave

incidence, the number of beams should be large enough that

the central column, which contains the Fourier coefficients of

the exit-surface wavefunction, is converged. The inversion

procedure requires not a single column but a central sub-

matrix. If we simulate a 69 beam matrix, then the inversion

applied to that matrix is a self-consistent problem. But the

converged calculation would require simulating for a matrix

sufficiently large that the central 69-by-69 beam submatrix is

essentially converged. This was approximated in the previous

section by truncating a 261 beam matrix. Such a truncated

problem would only be exactly consistent if the submatrix

appeared in a block-diagonal structure, since only in such a

case would the selected elements be independent of the

omitted ones. This will never quite happen in practice because

the repetition of elements in the structure matrix ensures that

low-order Fourier coefficients recur in structure matrices of all

orders.

That truncation is unavoidable begs the question of whether

the inversion is stable. Unfortunately this is not guaranteed.

The advantages garnered by converting the problem into a set

of linear equations for the unknown eigenvalues come
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Figure 1
(a) Intensity of exit-surface wavefunction for 152 Å thick GaAs in [110]
orientation. Maximum and minimum intensities are given below the
image. (b) Phase of the same exit-surface wavefunction. Maximum and
minimum phase values are given below the image. (c) True potential using
the first 69 Fourier coefficients. (d) Potential retrieved by 69 beam
truncation of a 261 beam scattering matrix, including 1% noise and
temporal incoherence. (e) Real component of Fourier coefficients.
( f ) Imaginary component of Fourier coefficients. (g) Sketch of projected
GaAs structure. (h) F(t) as defined by equation (18).



through the assumption that the eigenvectors of the scattering

matrix are identically those of the structure matrix. The

inversion is therefore unavoidably limited by how well the

eigenvectors of the scattering matrix, subsequent to truncation

and containing the errors incurred by noise and incoherent

effects, match those of the structure matrix.

To demonstrate this possible instability in the inversion, we

simulate the inversion step for a 300 Å thick sample of ZnS in

the [110] orientation using 300 keV electrons. The different

sample and parameters were chosen to illustrate the

instability, which does not occur in the case study of the

previous section. The scattering matrix was simulated using

459 beams. Fig. 2(a) shows the true projected potential using

the 103 Fourier coefficients (corresponding to a 36 mrad

aperture) on the central column of the structure matrix. Fig.

2(b) shows the potential retrieved by inversion of the scat-

tering matrix truncated to 103 beams. Figs. 2(c) and (d) show

similar results for 63 beams (corresponding to a 26 mrad

aperture). It is apparent that the retrieval from 103 beams is

worse than that from 63 beams, containing significant fluc-

tuations and little differentiation between the two column

types. The 63 beam inversion, while notably over-estimating

the magnitude of the potential, is in good qualitative agree-

ment with the true structure.

Strict rules have not been established as to when one should

expect an inversion to succeed or when it might struggle. One

indicator is the spread of significant magnitudes of scattering-

matrix elements away from the diagonal. For a submatrix to

behave as though it came from a block-diagonal matrix, one

desires the intensity near the top left and bottom right corners

of the matrix to be concentrated near the diagonal. This may

provide that the elements in a single column discarded by the

truncation are small. Cases have been found for an Si3N4

simulated inversion, in which there was significant spread

away from the diagonal axis in the scattering matrix, that

showed unstable oscillatory behaviour persisting to sub-

matrices of order much larger than corresponds to realistic

objective aperture sizes. That said, a variety of samples and

thicknesses was found that were amenable to this inversion

procedure and which possessed a tendency for the inversion to

improve, though not monotonically, with increased aperture

size.

Thus far, we have determined a fair estimate for a range of

lower-order Fourier coefficients – range depending on aper-

ture size – and also the thickness. The first of these stages was

deterministic, the inversion procedure produces a unique

result, though this does not give an assurance of high precision

in the retrieved structure because of the effects of truncation.

The second stage was based on minimization for a single

variable but in all our simulations this minimum was well

defined. The quantity of experimental data suggests that one

might now switch to an optimization procedure to refine our

values, thus improving the good qualitative agreement of Fig.

2(d) to good quantitative agreement and even extend the

resolution (i.e. obtain some potential coefficients off the

truncated central column). Previous optimization approaches

were limited because they required a reasonable starting

guess, which was obtained via either single scattering or

channelling approaches, both of which have a thickness-

limited domain of validity (Lentzen & Urban, 1996, 2000;

O’Leary & Allen, 2005). The result of our current method

could thus be combined with the experimental data and the

techniques of previous authors to extend the precision of the

retrieved potential.

7. Conclusions

Using simulations that include realistic constraints such as

counting noise and temporal incoherence, we have demon-

strated a structure retrieval method that uses diffraction

pattern data collected using the scanning transmission elec-

tron microscope in coherent imaging mode to reconstruct the

structure matrix. Though requiring the collection of a large

data set, the method can handle multiple scattering and does

not require that the thickness be known – indeed, it is able to

provide an excellent estimate for the thickness after the fact.

This approach removes the need to take data at carefully

controlled incident orientations, which has hindered the

implementation of the previous inversion method along these

lines.

I thank Dr L. J. Allen for several helpful discussions.
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